团队负责人:褚立强,博士、教授、博导
团队成员:
唐旭东,博士、教授、博导
曾威,博士、副研究员、硕导、材料系主任
韦会鸽,博士、副教授、博导
团队研究方向:
(1) 生物医用高分子材料
(2) 防污防腐高分子材料
(3) 有机无机杂化材料
(4) 导电高分子能源材料
(5) 生物基高分子复合材料
(6) 阻燃高分子材料
(7) 高分子功能薄膜与涂层
团队代表性科研项目:
(1) 国家自然科学基金,生物质基活性炭复合材料构筑高总体能量转化率“自给能”能源器件,23万,主持人:韦会鸽
(2) 国家自然科学基金,细菌纤维素凝胶体系中仿生硅化机制研究,25万,主持人:曾威
(3) 天津市新材料科技重大专项,纳米双疏材料的研发与应用,150万,主持人:唐旭东
(4) 教育部,新世纪优秀人才支持计划,50万,主持人:褚立强
(5) 天津市科协,天津市青年人才托举工程,45万,主持人:韦会鸽
(6) 天津市科委,农作物废弃物制备高性能固态超级电容器的研究及应用,10万,主持人:韦会鸽
(7) 天津市科委,生物大分子印迹聚合物的设计合成与生物传感性能研究,10万,主持人:褚立强
(8) 横向项目,高性能易清洁涂饰剂中试及产业化研究,200万,主持人:唐旭东
(9) 横向项目,汽车飞机用阻燃防污皮革的研制,12万,主持人:唐旭东
(10) 横向项目,花洒用ABS专用料的开发,20万,主持人:曾威
(11) 横向项目,卫浴用塑胶新材料开发及其加工工艺设计,20万,主持人:曾威
团队近五年授权发明专利:
(1) 曾威等,2020,The Preparation Method of an Electroplating Grade ABS/TPU Alloy Material with High Fluidity,澳大利亚革新专利号:2020103418
(2) 曾威等,2020,细菌纤维素/PVA可生物降解复合塑料薄膜的制备方法,专利号:ZL201710789965.7
(3) 曾威等,2019,一种仿生二氧化硅纳米管的制备方法,专利号:ZL201410208327.8
(4) 曾威等,2019,一种玻纤/氧化锌的制备方法,专利号:ZL201710791590.8
(5) 曾威等,2018,一种仿生二氧化钛纳米管的制备方法,专利号:ZL201410653359.9
(6) 曾威等,2018,一种掺杂型纳米氧化锌转光剂的制备方法,专利号:ZL201410652752.6
(7) 唐旭东等,2018,全氟碘制备单端Z型全氟聚醚硅氧烷的方法,专利号:ZL201610551515.X
(8) 唐旭东等,2017,紫外光固化超支化全氟聚醚聚氨脂丙烯酸脂涂料,专利号:201610011796.X
(9) 唐旭东等,2017,无催化剂制备多硅氧烷全氟聚醚的方法,专利号:201510993283.9
团队近五年代表性论文:
(1) Wei, H.; Kong, D.; Li, T.; Xue, Q.; Wang, S.; Cui, D.; Huang, Y.; Wang, L.; Hu, S.; Wan, T.; Yang, G., Solution-processable conductive composite hydrogels with multiple synergetic networks toward wearable pressure/strain sensors. ACS Sensors 2021, 6 (8), 2938-2951.
(2) Wei, H.; Xue, Q.; Li, A.; Wan, T.; Huang, Y.; Cui, D.; Pan, D.; Dong, B.; Wei, R.; Naik, N.; Guo, Z., Dendritic core-shell copper-nickel alloy@metal oxide for efficient non-enzymatic glucose detection. Sens. Actuators, B 2021, 337, 129687.
(3) Wei, H.; Li, A.; Kong, D.; Li, Z.; Cui, D.; Li, T.; Dong, B.; Guo, Z., Polypyrrole/reduced graphene aerogel film for wearable piezoresisitic sensors with high sensing performances. Adv. Compos. Hybrid Mater. 2021, 4 (1), 86-95.
(4) Zhou, D.; Li, D.; Li, A.; Qi, M.; Cui, D.; Wang, H.; Wei, H.,* Activated carbons prepared via reflux-microwave-assisted activation approach with high adsorption capability for methylene blue. J. Environ. Chem. Eng. 2021, 9 (1), 104671.
(5) Wu, Y.; Gao, J.; Fan, S.; Gu, Q.; Liu, Q.; Wang, Q.; Tang, X.;* Fang, Q.,* High Tg and excellent ultraviolet-shielding efficiency modified PMMA derived from protocatechuic acid. Eur. Polym. J. 2021, 156, 110609.
(6) Yu, X. D.; Li, J. H.; Li, H.; Huang, J.; Caccavo, D.;* Lamberti, G.; Chu, L. Q.,* Gelation process of carboxymethyl chitosan-zinc supramolecular hydrogel studied with fluorescence imaging and mathematical modelling. Int. J. Pharm. 2021, 605, 120804.
(7) Li, H.; Hao, M. X.; Kang, H. R.; Chu, L. Q.,* Facile production of three-dimensional chitosan fiber embedded with zinc oxide as recoverable photocatalyst for organic dye degradation. Int. J. Biol. Macromol. 2021, 181, 150-159.
(8) Wei, H.; Wang, H.; Li, A.; Cui, D.; Zhao, Z.; Chu, L.-Q.; Wei, X.; Wang, L.; Pan, D.; Fan, J.; Li, Y.; Zhang, J.; Liu, C.; Wei, S.; Guo, Z., Multifunctions of polymer nanocomposites: environmental remediation, electromagnetic interference shielding, and sensing applications. Chemnanomat 2020, 6 (2), 174-184.
(9) Wei, H.; Wang, H.; Li, A.; Li, H.; Cui, D.; Dong, M.; Lin, J.; Fan, J.; Zhang, J.; Hou, H.; Shi, Y.; Zhou, D.; Guo, Z., Advanced porous hierarchical activated carbon derived from agricultural wastes toward high performance supercapacitors. J. Alloys Compd. 2020, 820, 153222.
(10) Wang, Y. L.; Zhou, Y. N.; Li, X. Y.; Huang, J.; Wahid, F.; Zhong, C.; Chu, L. Q.,* Continuous production of antibacterial carboxymethyl chitosan-zinc supramolecular hydrogel fiber using a double-syringe injection device. Int. J. Biol. Macromol. 2020, 156, 252-261.
(11) Huang, J.; Wang, Y.-L.; Yu, X.-D.; Zhou, Y.-N.; Chu, L.-Q.,* Enhanced fluorescence of carboxymethyl chitosan via metal ion complexation in both solution and hydrogel states. Int. J. Biol. Macromol. 2020, 152, 50-56.
(12) Feng, Y.; Chen, X.; Wei, H.; Pei, Y.; Tang, X.,* Chloroethoxy-terminated perfluoropolyether electrolytes with high lithium ion transference number for lithium battery applications. Polymer 2019, 178, 121596.
(13) Zou, X.-N.; Han, X.; Zhang, Q.; Yin, J.-J.; Chu, L.-Q.,* Preparation and antibacterial activity of silver-loaded poly(oligo(ethylene glycol) methacrylate) brush. J Biomater Sci Polym Ed. 2019, 30 (9), 756-768.
(14) Tao, S.; Wang, W.-W.; Chu, L.-Q.;* Jia, T.-W.; Yang, Y.,* Direct immobilization of sugar probes on bovine serum albumin-coated gold substrate for the development of glycan biosensors. Biointerphases 2019, 14 (1), 011003.
(15) Wei, H.; Wang, H.; Xia, Y.; Cui, D.; Shi, Y.; Dong, M.; Liu, C.; Ding, T.; Zhang, J.; Ma, Y.; Wang, N.; Wang, Z.; Sun, Y.; Wei, R.; Guo, Z., An overview of lead-free piezoelectric materials and devices. Journal of Materials Chemistry C 2018, 6 (46), 12446-12467.
(16) Zhang, Q.; Zou, X.-N.; Chu, L.-Q.,* Surface plasmon resonance studies of the hybridization behavior of DNA-modified gold nanoparticles with surface-attached DNA probes. Plasmonics 2018, 13 (3), 903-913.
(17) Wahid, F.; Zhou, Y.-N.; Wang, H.-S.; Wan, T.; Zhong, C.; Chu, L.-Q.,* Injectable self-healing carboxymethyl chitosan-zinc supramolecular hydrogels and their antibacterial activity. Int. J. Biol. Macromol. 2018, 114, 1233-1239.
(18) Wei, H.; Cui, D.; Ma, J.; Chu, L.-Q.; Zhao, X.; Song, H.; Liu, H.; Liu, T.; Wang, N.; Guo, Z., Energy conversion technologies towards self-powered electrochemical energy storage systems: the state of the art and perspectives. J. Mater. Chem. A 2017, 5 (5), 1873-1894.
(19) Zhang, Q.; Wang, X.-D.; Tian, T.; Chu, L.-Q.,* Incorporation of multilayered silver nanoparticles into polymer brushes as 3-dimensional SERS substrates and their application for bacteria detection. Appl. Surf. Sci. 2017, 407, 185-191.
(20) Wahid, F.; Wang, H.-S.; Zhong, C.; Chu, L.-Q.,* Facile fabrication of moldable antibacterial carboxymethyl chitosan supramolecular hydrogels cross-linked by metal ions complexation. Carbohydr. Polym. 2017, 165, 455-461.
(21) Tao, S.; Jia, T.-W.; Yang, Y.;* Chu, L.-Q.,* BSA-sugar conjugates as ideal building blocks for SPR-based glycan biosensors. ACS Sensors 2017, 2 (1), 57-60.